Bohr Phenomenon for Locally Univalent Functions and Logarithmic Power Series

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Univalent functions of fast growth with gap power series

We construct univalent functions in the unit disc, whose coefficient sequences (an) have arbitrarily long intervals of zeros, and at the same time arbitrarily long intervals where |an| > n n holds, ( n) being an an arbitrary prescribed sequence of positive numbers tending to zero. Furthermore we show that the initial interval of coefficients of such a function can be prescribed to be any interi...

متن کامل

Sufficient Inequalities for Univalent Functions

In this work, applying Lemma due to Nunokawa et. al. cite{NCKS}, we obtain some sufficient inequalities for some certain subclasses of univalent functions.

متن کامل

Logarithmic-Exponential Power Series

We use generalized power series to construct algebraically a nonstandard model of the theory of the real eld with exponentiation. This model enables us to show the undeenability of the zeta function and certain non-elementary and improper integrals. We also use this model to answer a question of Hardy by showing that the compositional inverse to the function (log x)(log log x) is not asymptotic...

متن کامل

Generalization of Results about the Bohr Radius for Power Series

The Bohr radius for power series of holomorphic functions mapping Reinhardt domains D ⊂ C n into the convex domain G ⊂ C is independent of the domain G.

متن کامل

Remarks on the Bohr Phenomenon

Bohr’s theorem ([10]) states that analytic functions bounded by 1 in the unit disk have power series ∑ anz n such that ∑ |an||z| < 1 in the disk of radius 1/3 (the so-called Bohr radius.) On the other hand, it is known that there is no such Bohr phenomenon in Hardy spaces with the usual norm, although it is possible to build equivalent norms for which a Bohr phenomenon does occur! In this paper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Methods and Function Theory

سال: 2019

ISSN: 1617-9447,2195-3724

DOI: 10.1007/s40315-019-00291-y